A new model of Communicating Stream X-machine Systems
F. Ipate!, T. Bilanescu!, P. Kefalas®, M. Holcombe?, G. Eleftherakis®

'Department of Computer Science and Mathematics,
University of Pitesti, Romania
2Department of Computer Science,
University of Sheffield, UK
3Department of Computer Science,

CITY College, Thessaloniki, Greece

Abstract

One approach to formally specifying a system is to use a form of ex-
tended finite state machine called a stream X-machine. Several models
of communicating stream X-machines have been devised, either for syn-
chronous and asynchronous communication. One major problem with all
these models is that they deviate from the original definition of a stream
X-machine. This cause the existing stream X-machine theory or test-
ing methods to be inapplicable for such models. This paper devises a
new model of communicating stream X-machine systems. Unlike previous
models, the communicating stream X-machines used by this model con-
form to the standard definition of a stream X-machine, so all theoretical
results and test generation methods developed for stream X-machines will
also apply to this new model.

1 Introduction

An important approach to the development of high quality software is the use
of formal methods in its specification and verification. Formal specifications
and models remove the possibility of ambiguity and facilitate formal, possibly
automated, analysis.

One approach to formally specifying a system is to use a form of extended
finite state machine called a stream X-machine [18], [19]. A stream X-machine
(SXM for short) is a type of X-machine [9], [16], [18] that describes a system as
a finite set of states, each with an internal store, called memory, and a number
of transitions between the states. A transition is triggered by an input value,
produces an output value and may alter the memory. A stream X-machine may
be modelled by a finite automaton (the associated finite automaton) in which
the arcs are labelled by function names (the processing functions). Thus, stream
X-machines can combine the dynamic features of finite state machines with data
structures, thus sharing the benefits of both these worlds. Various case studies
[18], [10], [31] have demonstrated the value of the stream X-machine as a spec-
ification method, especially for interactive systems. A tool for writing stream
X-machine specifications has also been constructed [27]. The refinement of
stream X-machines [22], [25] as well as various subclasses of stream X-machines

[19], [3], [5], [12] have also been investigated. Furthermore, the minimality issue
has been investigated in the context of stream X-machines [26].

Another strength of using stream X-machines to specify a system is that,
under certain well defined conditions, it is possible to produce a test set that
is guaranteed to determine the correctness of an implementation [20], [18], [17].
The testing method assumes that the processing functions are correctly imple-
mented and reduces the testing of a stream X-machine to the testing of its
associated finite automaton. In practice, the correctness of the processing func-
tions is checked by a separate process: depending on the nature of a function,
it can be tested using the same method or alternative functional methods [18],
[21].

The method was first developed in the context of deterministic stream X-
machines [20], [18] and then extended to the non-deterministic case [23]. The
method in which, initially, only equivalence testing was considered, has also
been extended to address conformance testing [14].

Several models of communicating stream X-machines have been devised [6],
[2], [8], [11], [24], either for synchronous and asynchronous communication and
used for modelling P-systems [1]. One major problem with all these models is
that they deviate from the original definition of a stream X-machine. This cause
the existing stream X-machine theory or testing methods to be inapplicable for
such models. Another model, closer to the original definition, has recently
been introduced and used in practical applications [29]. However, even in this
case, there are differences from the standard model (i.e. each machine may use
processing functions especially designed for communication), so the application
of the existing theory to this model is still problematic.

This paper devises a new model of communicating stream X-machine sys-
tems (CSXMS for short). Essentially, each communicating SXM used by the
model is a stream X-machine (that conforms to the original definition of the
model) with an (implicit) input queue. Each communicating SXM can receive
and send symbols both to other communicating SXMs or to the external en-
vironment. The interactions between the communicating SXM components of
this model mimics the interactions that exist in a communicating finite state
machine system [15].

There are several reasons for introducing a new model of communicating
SXM. Firstly, unlike previous models, it conforms to the standard definition
of a stream X-machine, so all theoretical results developed for SXMs will also
apply to this new model. Secondly, it generalizes the communicating finite state
machine model used to describe the control structure of specifications written
in language such as Statecharts and SDL [34]. Therefore CSMSs can be used
to describe both the control and the data structure of such specifications. This
model of communicating SXM is thus relevant to a number of fields, including
embedded systems [13] and communication protocols [36]. Finally, since the
model conforms to the standard definition of a SXM, the testing method devel-
oped in the context of SXMs can be extended to this new model. This aspect
is discussed in more detail in Section 6.

Before continuing, we introduce the notation used in the paper. For a finite
alphabet A, A* denotes the set of all finite sequences with members in A. €
denotes the empty sequence. For a,b € A* ab denotes the concatenation of
sequences a and b.

For a (partial) function f : A — B, dom(f) denotes the domain of f, the
subset of A for which f is defined.

For n sets Ay,...,A,, m; : Ay X ... x A, — A; denotes the projection
function, for 1 < ¢ < n.

2 Basic definitions

In this section the stream X-machine and other basic concepts related to it are
defined. For more details see [18] or [23].

Definition 2.1 A stream X-Machine (SXM for short) is a tuple
Z = (27 F’ Q7 M7 ¢7 F7 I7 T’ m0)7
where:

e Y and I' are finite sets called the input alphabet and output alphabet
respectively;

e () is the finite set of states;
e M is a (possibly) infinite set called memory;

e & s the type of Z, a non-empty finite set of function symbols. A basic
processing function
¢ MxY —TxM

is associated with each function symbol ¢.

e F' is the (partial) next state function,
F:Qx®— 29

As for finite automata, F' is usually described by a state-transition dia-
gram.

e [and T are the sets of initial and terminal states respectively,

I1CQ,TCq;

e mO is the initial memory value,

m® € M.

Thus, SXMs are X-machines for which the basic processing functions have
the form ¢ : M x X — I x M, i.e. each such function will read an input
symbol, discard it and produce an output symbol while (possibly) changing the
value of the memory.

It is sometimes helpful to think of an X-machine as a finite automaton
with the arcs labelled by function symbols from the type ®. The automaton
Az =(®,Q,F,I,T) over the alphabet ® is called the associated FA of Z. The
automaton Ay is deterministic if the machine has only one initial state and F'
maps each state/processing relation pair into at most one single state, i.e.

I={¢"}
F:Qx®—Q

In what follows we will require that the associated automaton of the machine
specification is deterministic, but this is not really a restriction of the method
since [23] proves that for any arbitrary SXM there is a SXM whose associated
automaton is deterministic so that the two machines compute the same relation
- for the definition of the relation computed by a SXM see definition 2.4.

Note 2.1 Throughout this paper, for ¢1,¢2 € ®, the expression ¢ = ¢o will
denote that ¢1 and ¢o are identical symbols (this is a stronger condition than
the equality of the associated functions ¢1 and ¢2).

Definition 2.2 We define a configuration of a SXM by

(m,q,5,9),

where m € M,q € Q,s € ¥*,g € I'*. An initial configuration will have the form
(m°,¢°, s, ¢€),

where ¢° € I is an initial state. A final configuration will have the form
(m,q’,e.9),

where ¢/ € T is a terminal state.

Definition 2.3 A change of configuration, denoted by +,
(m,q,s,9) F(m',q', ',),

is possible if s = o8’ with o € X, ¢ = gy with v € T and 3¢ € ® such
that ¢ € F(q,¢) and ¢(m,o) = (y,m'). A change of configuration is called a
transition of a SXM.

We denote by F* the reflexive and transitive closure of F .

A machine computation takes the form of a sequence of configurations that
starts in an initial one and ends in a terminal one. The correspondence between
the input sequence applied to the machine and the output produced gives rise
to the relation computed by the machine, as defined next. In general, a SXM
is non-deterministic, in the sense that the application of an input sequence can
produce more than one single output sequence.

Definition 2.4 The relation computed by Z, fz : ¥* «— I'*, is defined by:
sfzg <= 3 € I,q € T,m € M such that (m°,¢°,s,€) F* (m, q, €, g).
Note 2.2 If sfzg then length(s) = length(g).

Note that in certain circumstances a SXM will compute a function rather
than a relation. This happens, for example, when the associated automaton is
deterministic and any two processing functions associated to distinct functions
symbols that emerge from the same state have disjoint domains. In this case
the machine is called deterministic.

Definition 2.5 An SXM Z is called deterministic if the following hold.
e The associated FA of the machine is deterministic, i.e.

— Z has only one initial state, i.e.
I'={q};

— The next state function of Z maps each pair (state, processing func-
tion) onto at most one state, i.e.

F:Qx®— Q;

e Any two distinct processing functions that label arcs emerging from the
same state have disjoint domains, i.e.

V1,00 € ® if A¢ € Q with (q,¢1),(q,¢2) € dom(F) then ¢1 = ¢o or
dom(é1) N dom(ds) = 0.

3 Communicating Stream X-Machines Systems
(CSXMSs)

This section defines a communicating stream X-machine system and explains
its behaviour.

Definition 3.1 A communicating stream X-machine system (CSXMS for short)
with n components is a tuple S, = ((Zi)1<i<n, E), where:

L Zz = (Ei,Fi,Qi,Mi,q)i,Fi,Ii,Ti,m?) is the SXM with number ’L., 1 S 1 S
n.

IA

o E = (ejj)i<i,j<n 15 ¢ matriz of order n x n with e;; € {0,1} for 1 <1i,j
n,i#jand e; =0 for 1 <i<n.

A CSXMS works as follows:

e Each individual communicating SXM (CSXM for short) is a SXM plus
an implicit input queue (i.e. of FIFO (first-in and first-out) structure) of
infinite length; the CSXM only consumes the inputs from the queue.

e An input symbol o received from the external environment will go to the
input queue of a CSXM, say Z;, provided that it is contained in the input
alphabet of Z;. If there exists more than one such Z;, then o € X; will
enter the input queue of one of these in a non-deterministic fashion.

e Each pair of CSXMs, say Z; and Z;, have two FIFO channels for commu-
nication; each channel is designed for one direction of communication. The
communication channel from Z; to Z; is enabled if e;; = 1 and disabled
otherwise.

e An output symbol v produced by a CSXM, say Z;, will pass to the in-
put queue of another CSXM, say Z;, providing that the communication
channel from Z; to Z; is enabled, i.e. e;; = 1, and it is included in the
input alphabet of Z;, i.e. v € 3;. If these conditions are met by more
than one such P;, then v will enter the input queue of one of these in a
non-deterministic fashion. If no such Z; exist then vy will go to the output
environment.

e A CSXMS will receive from the external environment a sequence of inputs
s € ¥* and will send to the external environment a sequence of outputs
geT*, where X =% U...UX,, T =T\ In)U...U(Ty \ Iny,) with
In; = Uger; B and K; ={k |1 <k <n,e; =1} for 1 <i <n.

Example 3.1 Consider, for example, the CSXMS Sy = ((Z1,2Z2),E) with
e = ez =1 and Zy and Zy as follows:

o X = {avbac}v I = {z,y,z}, Q1 = {q?,q%}, L = {Q?}a T, = Q, My =
{0,1}, m(l) = 0, (I)l = {Qﬁ%, %,(]ﬁ} with (]5%, %,qﬁ? : M1 X 21 — Fl X
M defined by: ¢t(mi,a) = (x,1 —my) for my € My, ¢?(1,b) = (y,1),
$3(0,¢) = (2,0) and Fy : Q1 x &, — Q1 defined by: Fi(q),¢1) = qi,
Fi(q1,61) = 47, Fi(qi, 9}) = af;

o X = {’LL,’U}, I, = {aab}v QZ = {qqué}v I, = {qg}a T, = QZ, M, = {07 l}v
my = 0, 2 = {@d, 3} with ¢, ¢35 : My x Ny — Ty x My defined
by: ¢i(ma,u) = (a,ms), ¢2(ma,v) = (b,ms), for my € My and Fy :
Q1 x @1 — Q1 defined by: F>(a3, d3) = a3, Fa(g3,93) = 5.

A graphical representation of Sy is given in Figure 1.

Suppose each CSXM is in its initial state and has initial memory value and
empty input queue. If So receives the input u, then it enters the input queue of
Zy. The input u will be then processed by ¢3 that outputs a and moves Zs in qs
while its memory value remains unchanged. The value a is in the input alphabet
of Zy, so, since ey = 1, it enters into the input queue of Zi. a is then processed
by ¢} that outputs x and moves Zy in qi while the memory value becomes 1. As
x is not in the input alphabet of Zs, it is sent to the environment as output.

M,={0,1} M={0,1}
Z, Z,
o o %
T -
1
¢ s : .
(/I)}

Figure 1: An abstract CSXMS with two X-machines Z; and Z

Definition 3.2 A configuration of a CSXMS S,, has the form

Z = (Zl’---’Zn’S’g)’
where:

e 2, = (Mmy,qi,04),1 < i < n, where m; € M; is the current value of the
memory of Z;, q; € Q; s the current state of Z; and o; € X is the
current contents of the input queue of Z;;

e s is the current value of the input sequence;

e g is the current value of the output sequence.

Definition 3.3 An initial configuration has the form 2° = (29,...,29 s,¢),
where
20 = (m?, 4, €) with ¢} € I.

A final configuration has the form 2/ = (z{, oo 2zl e, g), where

Y n
zlf = (mi,qlf,ai) with qlf e T;.

Passing from a configuration z to a new configuration 2z’ supposes that at
least one of the X-machine changes its configuration, i.e. a processing function
is applied.

Definition 3.4 A change of configuration of a CSXMS S,,, denoted by |=,

2= (21, s 2n,8,9) EZ =1, 20,5, 4),

with z; = (M4, qi, ;) and z; = (m},q},al), is possible if one of the following is
true for some i:

1. (m},q},a}) = (m4, s, 040) with 0 € Ty; z;, = 21, for k #i; s =08, ¢’ = g;

2. (my,qi,004,€) F (m}, g}, al,y) witho € X5, v € T;\ Ing; 2;, = 21, for k # 1
s'=s,9 =97

3. (my,qi,00,€) F (m}, g, al,v) with o € Z;, v € I;NE; for some j # i
such that e;; = 1; (m},q;,a’) = (mj,q5,a;7); 2, = zx for k # i and
k#j;s' =59 =g

A change of configuration is called a transition of a CSXMS.

The three types of transitions above are called: input transitions (1), output
transitions (2) and internal transitions (3). These are denoted by Finp, Fouts
Eint, respectively.

For S, as in Example 3.1, (0,47, €), (0,43, €),u, €) [Finp ((0,47,€), (0,43, u), €, €)
is am input transition, (0, ¢{,€), (0,43, 1), €,€) =ont (0,40, a), (0,q3,€), €, €) is an
internal transition and (0, g2,), (0, b, €), €,) Four (1,45), (0,qd,), €, 2) is
an output transition.

We denote by |=* the reflexive and transitive closure of |= .

The correspondence between the input sequence applied to the system and
the output sequence produced gives rise to the relation computed by the system,
as defined next.

Definition 3.5 The relation computed by a CSXMS, fs, : ¥ +— I is defined

by:

sfs,gif 320 = (29,...,20,5,€) and 2/ = (2{,..., 2] €,g) an initial and final
configurations, respectively, such that z° |=* 27 and there is no other configura-
tion z such that z¥ |= z. Such a sequence of transitions (i.e. 2° =* 2¥) will be

called a complete sequence of transitions.

Note 3.1 The computation induced by fs, will always start with an input tran-
sition.

Note 3.2 Unlike for the relation computed by a non-communicating SXM, there
may be s and g with length(s) # length(g) such that sfs,g. We may even have
the situation in which length(s) # 0, length(g) = 0 and sfs, g, as illustrated
by the following example. If So = ((Z1, Z2), E) with e1a = ea1 = 1 and Z; and
Z> as fOllO’U)S.‘ Y1 =3 = {aab}; I =Ty = {117}, Ql = {qtl]}v QQ = {qg}; L =
Ty =Qi, I, =Ty = Qa, My = My, = {0}, m) =m9 =0, &, = &y = {¢} with ¢
defined by ¢(0,a) = (z,0), Fy defined by F1(q?,¢) = ¢¥ and Fz(q9,¢) = ¢5 then
fSQ(bk) =6 vk > 0.

Definition 3.6 A CSXMS S, = ((Zi)i<i<n, E) is called deterministic if each
Z; is deterministic and for each i # j, ¥; N, = .

In a deterministic CSXMS, the function that processes an input symbol is
always uniquely determined.

4 The product machine

We say that a CSXMS runs in a slow environment if inputs can be sent from
the environment to the system only in situations where the input queues of all
communicating SXMs are empty.

In a slow environment, if an input transition is possible then any output or
internal transition is excluded and conversely. Moreover, one output transition
must exist between any two input transitions, as stated in the following;:

Lemma 4.1 In a slow environment, any complete sequence of transitions is of
one of the following two forms:

1. ':inp|:;nt ((':out|:inp) |:;nt)* or
2. ':inp|:;nt ((':out|:inp) |:;nt)* ':out .

Proof. Follows from the explanation above. a

We say that a CSXM has a dead-lock if there are complete sequences of
transitions of type 1 in Lemma 4.1.

Theorem 4.1 If S,, runs in a slow environment and sfs, g then (length(g) =
length(s) or length(g) = length(s) — 1). Furthermore, if S,, has no dead-lock
then length(g) = length(s).

Proof. A direct consequence of Lemma, 4.1. |

Theorem 4.2 A deterministic CSXMS that runs in a slow environment com-
putes a (partial) function rather than a relation.

Proof. Since the CSXMS runs in a slow environment, there will be at
most one non-empty queue and this will contain at most one symbol. Since the
CSXMS is deterministic this symbol can be processed by at most one transition.
O

We say that a CSXM has a live-lock if it is possible to execute an infinite
number of transitions without further inputs. That is, a CSXM has a live-lock
if it is possible to execute an infinite number of consecutive internal transitions.
For instance, Ss in Example 3.1 has no live-lock.

Sometimes, the live-lock may be avoided by assuming the eventual occurrence
of some events (fairness). Consider the following example:

Example 4.1 If S3 = ((Z1, Z2, Z3), E) with e;; = 1 for i # j and Z1, Z> and
Zs as follows: ¥y = {a}, L2 = 3 = {z}, Iy = {z}, T2 = {a}, ['s = {y},
Qi={d}, Q2={3}, Qs ={3}, L =T1 =Q1, L=T> =Q2, I3 =T3 = Q3,
My = M, = Mz = {0}, m{ =m3 =m3 =0, &1 = {¢1 }, > = {¢}, B3 = {¢3},
with ¢17¢2v¢3 deﬁnEd by ¢1(07a) = (l’,O), ¢2(0,l‘) = (G,O), ¢3(0,Z‘) = (yao)v
Py, B, Fy defined by Fi(q], 1) = ¢f and F>(q3, ¢2) = a5, F3(a3, d3) = 43, then
Ss has a live-lock processing the input sequence a.

The live-lock in Example 4.1 is due to the fact that an infinitely often enabled
event (i.e. passing z to the input queue of Z3) does not occur.

The strong-fairness condition guarantees the eventual occurrence of an infinitely-
often enabled event. If S5 runs under this condition then the CSXMS considered
in Example 4.1 is live-lock free.

If a deterministic CSXMS runs in a slow environment and has no live-lock
and dead-lock, then it can be modelled by an equivalent SXM, called the product
SXM. This is now defined.

In the remainder of this section we will assume that the CSXMS runs in a
slow environment and contains no live-lock and dead-lock.

Definition 4.1 A global transition of a CSXMS S,,, denoted by =9,
A=

is possible if there is a sequence of transitions, z |E z1 |= ... E zn, |= 2" with
n > 1 such that z |E z1 is an input transition, z, = 2z' is an output transition
and for 1 <i<mn-—1, z; E zit+1 is an internal transition.

That is, a global transition reads an input from the external environment,
writes an output to the the external environment and performs a finite number
of internal transitions in between.

For S, as in Example 3.1, ((0, 4%, ¢€), (0,49, €),u,€) =9 ((1,41,€), (0, g3, ¢€),€,)
is a global transition.

Definition 4.2 Let S, = i
(24,04, Q4, M, ®;, F;, I;, T;,m?), 1 < i <n and E = (es5)1<i,j<n- Then a SXM
Hn = (ZvraQaMa(ﬁaFia-[iaTiva)

e X =3,U...UZ,;

=T\ In)U...uUT,\ Iny,), where In; = Ugeg, Xk and K; ={k|1<
k<n,ey =1} for 1 <i<m;

Q=0Q1%X...xXQn;
o M =DM X...x My;

D = {dyp | 4,0 € Q}, where ¢y : M x X — T x M is defined by:
¢11p(mag) = (’Yaml) if((ml,ql,e), R (mnaq'me)aove) ':g ((mllvplae)a ey (m;zvpnve)a€77)a
wheTeq = (QIa"'aqn)ap: (pla"'ap’ﬂ)’ m = (mla"'am’n)ﬂ m' = (mllaam{n)v

F:Qx® — Q is defined by: F(q,dqp) = p, for q,p € Q;

o [=1 x...xX Iy

o T'=T) x...xTy;
0 — (10 0
e m? = (m},...,m))

is called the product machine of S,,.

10

Theorem 4.3 Let S, be a deterministic CSXMS that runs in a slow environ-
ment and contains no live-lock or dead-lock and I1,, the product machine of S,,.

Then fs, = f, -

Proof. Follows from the construction of II,,. a

5 Alternative CSXMS models

The proposed model for CSXMS conforms to the standard definition of SXM,
unlike the models proposed elsewhere [6], [2], [8], [11], [24], [29]. The closest to
this model is introduced in [29]. This section attempts a comparison between
the two models, by presenting an example modelled in both approaches.

Definition 5.1 In [29], a communicating X-machine model is defined as a tu-
ple:

Cn = ((Mi)i<i<n,CR),
where
e M; is the ith SXM component that participates in the system, and
e CR is a communication relation between the n SXM components.

CR is defined as a relation CR C M x M, where M = {M;|1 <i < n}, and
determines the communication channels that exist between the X-machines of
the system.

A tuple (M;, M}) € CR denotes that SXM M, can write a message through
a communication channel to a corresponding input stream of SXM M. A
communicating X-machine component is therefore defined as:

M; = (EMHFMNQM“MMia(I)MiaFMiaq?\/[iam(}vti)a

that matches the original definition of a SXM with the only difference that ® 4, ,
contains four types of functions ¢4, :

e functions that read from standard input stream and write to standard
output stream:

dm; (o,m) = (v,m') where 0 € Xpq,, v € Taq,,m,m’ € Myy,,

e functions that read from a communication input stream a message that is
sent by another SXM M; and write to standard output stream:

dat; ((0) A, m) = (7, m') where 0 € Xpy,, v € T gy, m,m' € Mpy, and
(Mj,Mi) ECR,

11

e functions that read from standard input stream and write to a communi-
cation output stream a message that is sent to another SXM My:

¢Mi (Ua m) = ((’Y)Mkaml) where o € ZMH'Y € FMiﬂmﬂm/ € MMi and
(Mi,./\/lk) S CR,

e functions that read from a communication input stream a message that is
sent by another SXM M and write to a communication output stream a
message that is sent to another SXM My:

dam; ((0)am;,m) = ((V)m,»m') where o € Ty, v € Tagy,mym' € My,
and (M;, M;) € CR and (M;, M;) € CR.

The notation (o), denotes an incoming input from SXM M; while (y)a4,
denotes an outgoing output to SXM M. Instead of communicating with only
one SXM M}, M; may communicate with all My, ..., Mgy, sending them
01,...,0p, respectively. In this case all (M;, My;), 1 < j < p, must belong
to CR and (y)a, will be replaced by (v1)am, & - - &(7p) My, - Apart from the
standard input stream, this approach implies a set of communication input
streams attached to each SXM. The total number of input streams associated
with one SXM depends on the number of other SXMs, from which it receives
messages.

Example 5.1 Consider a queue of cars in front of a traffic light (figure 2) as
it is adopted by [30]. The communicating system consists of two SXM, one
that models the traffic light and one that models the queue of cars. In the two
different approaches, the CSXMSs are:

Sp = ((Lights, CarQueues), [[0,1][0,0]]), and
C,, = ((Light., CarQueue.), (Light., CarQueue.))

In both cases, the memory of queue of cars SXM holds a sequence of cars
arrived at the traffic light. The memory of the traffic light SXM holds the total
number of clock ticks elapsed since the last change of colour (red to green and
vice-versa) as well as the number of ticks that a colour should be displayed
(duration).

While cars arrive one by one, they join the queue. A car departs from the
queue only if is signaled to do so. The traffic light works under clock ticks (time
units) that are used to determine the duration of each colour displayed. In the
overall system, the cars should wait in the queue as long as the traffic light is
red. Therefore, the communication of the two systems consists of the following:
the change of light from red to green should signal the queue to allow cars to
depart.

The set of states, the initial state and the next state functions for the two
models are shown diagrammatically in figure 2. The rest elements of the SXMs
are defined below:

12

sequence of CARS

direction

I

|§| traffic light

Figure 2: A sequence of cars queuing in front of a traffic light.

M=(seq CARS)

M=(TicksElapsed, DurGreen, DurRed)

queue

arrives

first_arrives

traffic light

keep_green
change_green

queuing
last leaves

reject leaves

change red

keep_red

Figure 3: The set of states @, the initial state go and the next state function F'
of the queue and traffic light SXMs

Egueue = CAR U {car_leaves}, where [CAR] is a basic type

T yueue = {FirstArrived, NextArrived, CarLeft, LastCarLeft, NoCarInQueue}
Myyeue = seq CAR

D jueue = { first_arrives(c,nil) = (FirstArrived, c.nil)ifc € CAR,

arrives(c, queue) = (NextArrived, c.queue) if ¢ € CAR,
leaves(car_leaves, c.rest) = (CarLeft, rest),
last_leaves(car_leaves, c.nil) = (LastCarLe ft,nil),
reject(car_leaves, nil) = (NoCarInQueue,nil)}

Zlight = {tick}

Liignt = {RedColour, GreenColour}

Myignt = Tiicks_elapsed x Duration_green x Duration_red, where
Ticks_elapsed, Duration_green, Duration_red € Ny

Mg = (0,30,20)

Diight =
{keep_red(tick, (te,dg,dr)) = (RedColour, (te + 1,dg, dr)) if te + 1 < dr,
change_green(tick, (dr,dg, dr)) = (GreenColour, (0,dg, dr)),
keep_green(tick, (te,dg, dr)) = (GreenColour, (te + 1,dg, dr) if te + 1 < dg,
change_red(tick, (dg,dg, dr)) = (RedColour, (0,dg, dr))}

13

Putting it altogether as a communicating system, the output set of light
SXM should change in both approaches, S, and C,, to I'jigns = {RedColour,
GreenColour, car_leaves}, in order to include an output signal that will trig-
ger the departure of cars from the queue. Also, in both cases the functions
change_green and keep_green change as follows:

e In S,:

change_green(tick, (dr,dg, dr)) = (car_leaves, (0,dg,dr)),
keep_green(tick, (te,dg,dr)) = (car_leaves, (te + 1,dg, dr) if te + 1 < dg,

e InC,:

change_green(tick, (dr,dg, dr)) = ((car_-leaves)queue, (0,dg, dr)),
keep_green(tick, (te,dg,dr)) = ((car_leaves)queue, (te + 1,dg, dr) if te +
1 < dg,

e In addition, in C),, the functions leaves,last_leaves and reject change to:

leaves((carleaves)light, c.rest) = (CarLeft, rest)
last_leaves((car leaves)light,c.nil) = (LastCarLe ft, nil)
reject((car_leaves)light, nil) = (NoCarInQueue,nil))

As far as computation is concerned the two systems behave identically. The
light SXM receives a number of time units (tick) and when the appropriate time
elapses it changes its state to green. While time units are still input, the light
SXM outputs a signal. In S,,, the signal (car_leaves) is pick up by queue, which
is the only SXM in the system that can accept such input. In C,,, the signal is
directed explicitly to the queue SXM.

As shown from the formal definitions as well as the example presented above
the differences between S,, and C,, are summarized in the following table:

| Sn | Cn |
Matrix E Communication Relation CR

An implicit input queue to each SXM | A standard input stream to each
SXM and as many communicating

streams as the input communication

channels attached to each SXM
No annotation in functions Annotations to indicate source SXM

or destination SXM of input or out-
put respectively.

The first two are conceptual differences. The matrix and the relation identify
the same entity. The implicit input queue in S,, can easily be conceptualized
as the product of the set of multiple implicit input streams in C,,. The third
difference is subtle but a rather important one. It affects: (a) cardinality of
communication, (b) modelling of large systems and (c) conformity to standard
theory of X-machines.

14

Firstly, in C,, one can express 1 to N channels of communication between
SXMs. This might be particularly useful when messages need to be broadcasted
to a set of SXMs participating in the system, e.g. foraging colonies of ants or
bees [28]. In the case of S),, such communication can only be achieved by special
purpose SXM which may act as multiplexers for communication and stand in
between the SXMs which need to communicate in that fashion.

Secondly, modelling of large-scale systems may be less intuitive with S,,.
This is because, in large systems, multiple instances of the same model may
occur within the same system. For example, in a junction with more than one
traffic light and consequently more queues of cars, one needs to model each
instance so that each SXM receives a different input. This could be achieved
by defining the input and the output set of each instance SXM in a different
way. For example, one could use a tupple (Z,0) and (Z,~) for input and output
respectively, where Z acts as an identifier for the source or the target machine.
Otherwise, if this is not explicitly done, the output may be consumed by the
“wrong” SXM. This is not the case with C),, since each message “knows” its
recipient.

Finally, the last difference is the one that acted as motivation for the current
work. In the case of C,,, although practical development is largely facilitated by
an incremental and modular process, no implication is made as to how existing
strategies for testing can be incorporated to the approach. Instead, S, provides
a solid theoretical framework which, based on the conformity of CSXMS to
the standard definition of SXM, can lead towards the natural extension of the
testing method [18], [23]. It is feasible under certain conditions to translate some
classes of C), to an S, and therefore to be able to apply the testing methodology
in these classes as well. However, this requires further investigation.

6 Testing CSXMSs

An important strength of using stream X-machines to specify a system is that,
under certain well defined conditions, it is possible to produce a test set that
is guaranteed to determine the correctness of an implementation [20], [18]. We
describe here the method and suggest possible ways of applying this to CSXMSs.
Throughout this section we assume that SXMs and CSXMSs are deterministic.

The testing method assumes that the processing functions are correctly im-
plemented and reduces the testing of a stream X-machine to the testing of its
associated finite automaton. In practice, the correctness of the processing func-
tions is checked by a separate process: depending on the nature of a function,
it can be tested using the same method or alternative functional methods [18],
[21].

Unlike the traditional extended finite state machine testing approaches [7],
[32], [37], this method does not involve the construction of the equivalent finite
state machine (whose states are the state/memory pairs of the original stream X-
machine), and therefore does not rely on the finiteness of the memory and avoids
the state explosion problem associated with this construction. Instead, in typical

15

applications of the method, it is successively applied to the hierarchy of stream
X-machines that are created when the processing functions are considered at
lower and lower levels. Thus, testing a specific function involves considering it
as a computation defined by a simpler stream X-machine and so on. Ultimately,
at the lowest level, the processing functions are usually quite simple and can
be tested using suitable alternative methods - for example category partition
testing [35] or a variant - or even assumed to be fault free if they are routines
or objects from a library.

Furthermore, the method can guarantee the correctness of the implemen-
tation under test only if the processing functions meet some ”design for test
conditions” viz. input-completeness and output-distinguishability [20], [18], [4].

Definition 6.1 Let U C X. ® is called input-complete w.r.t. U if Vo € &, m €
M, 30 € U such that (m,o0) € dom(¢). If U = X then ® is simply called
input-complete.

This condition ensures that any processing function can be exercised from
any memory value using appropriate input symbols in U.

Definition 6.2 Let U C X. ® is called output-distinguishable w.r.t. U if
V¢1,¢2 € (I), ((Elm € M,O’ € U with 7T1(¢1(7’)’L,0’)) = 7T1(¢2(m,0))) — ¢1 = ¢2)
If U = X then ® is simply called output-distinguishable.

This says that we must be able to distinguish between any two different
processing functions by examining outputs. If we cannot then we will not always
be able to tell them apart.

For Example 3.1, ®; is both input-complete and output-distinguishable,
while ®, is output-distinguishable but not input-complete.

The design for test conditions can be easily introduced in the definitions of
the processing functions by using extra input and output symbols; a very simple
algorithm is given in [18]; the extra inputs and outputs can be filtered out once
the system has passed testing.

Let us see now how this method can be applied to test a CSXMS. If the
CSXMS runs in a slow environment and contains no live-lock then an equiv-
alent SXM (the product machine) can be constructed and the SXM testing
method can be applied to this machine. However, this approach might not be
always convenient for at least two reasons: the product machine will have to
be explicitly constructed and used as a basis for test generation instead of the
individual CSXMs; furthermore, this construction suffers from a combinatorial
explosion (i.e. if n; denotes the number of states of Z; then the number of states
of the product machines is of O(II(n;))) and this, in turn, may produce test sets
of unmanageable size.

Alternatively, the testing method can be applied to each individual CSXM;
the test set for the CSXMS will be then the union of the individual test sets.
However, since a CSXM Z; cannot be tested in isolation from the rest of the
systems, the following issues will have to be considered: (As above, it will be
assumed that the CSXMS runs in a slow environment and contains no live-lock.)

16

o feedback: Informally, a transition ¢; of a CSXM Z; feedbacks in a global
transition T of S,, if T contains ¢; and at least one more transition from Z;
after ¢;. In this case an input symbol applied to Z; may trigger more than
one transition in this CSXM, which makes the application of the method
more difficult. Ideally, transitions that feedback should be avoided in a
CSXM specification.

e erroneous output masking: Since the output symbol produced by a tran-
sition t; of Z; may trigger a transition in another CSXM Z;, an erro-
neous output of ¢; may be "masked” if there are two transitions ¢; and
t;- of Z; triggered by different inputs that have identical initial states
and memory values and produce identical outputs. Indeed, let ¢; be
(qi,mi,0,€) (q;,m;,e,(fj), t; be (qjvmjvgjvc) - (q;'vmgaea’)/j) and t;‘
be (gj,mj,0},€) = (g}, mj,€,v;). If t; produces erroneous output o7, it
will trigger t; instead of ¢; but this leads to the expected output. There-
fore, a CSXM specification should not include transitions triggered by
different inputs that have identical initial states and memory values and
produce identical outputs.

e design for test: When design for test conditions are considered it should
be taken into account the fact that not all the input symbols received by
a CSXM Z; will come from the external environment, some may come
from other CSXMs. The simplest way of dealing with this situation is
to enforce design for test conditions w.r.t. a set of inputs U; that can
only come from the external environment, i.e. U; C X; \ Ujes,T'; with
Ji ={j|1<j < ne; = 1}. Other, more complex, design for test
conditions, in which the input symbols may come from other CSXMs
may also be considered, but this will involve further constraints on the
computation of each CSXM component.

A future paper, dedicated to CSXMS testing, will describe more formally all
these aspects.

7 Conclusions

The paper introduces a new model of CSXMS. It generalizes the communicating
finite state machine model used to describe the control structure of specifications
written in language such as Statecharts and SDL [34]. Therefore CSXMSs can
be used to describe both the control and the data structure of such specifications.

The computation of such a CSXMS is investigated, in particular for the case
where the system runs in a slow environment and has no live-lock. In particular,
it is shown that in these conditions the system is computationally equivalent to
a SXM, called the product SXM.

The new model is compared to one of the existing CSXM models used ex-
tensively in practical applications [29]. It is shown that the two models share
many general features. The model in [29] may have additional power to express

17

certain particular conditions but this is achieved at the expense of deviating
from the standard definition of a stream X-machine.

Unlike previous models, the model of a CSXM conform to the standard defi-
nition of a stream X-machine, so all theoretical results developed for SXMs will
also apply to this new model. In particular, the paper discusses the application
of the existing testing method to a CSXMS.

References

[1] Aguado, J., Balanescu, T., Cowling, T., Gheorghe, M., Holcombe, M.,
Ipate, F. P Systems with Replicated Rewriting and Stream X-machines
(Eilenberg machines). Fundamenta Informaticae, 49 (1-3), 2002, 17-33.

[2] Balanescu, T., Cowling, T., Georgescu, H., Gheorghe, M., Holcombe M.
and Vertan, C. Communicating stream X-machines are no more than X-
machines. Journal of Universal Computer Science, 5, 1999, 494-507.

[3] Baldnescu, T., Gheorghe, M. and Holcombe, M. Deterministic stream X-
machines based on grammar systems. In Martin-Vide, C. and Mitrana, V.
(eds), Words, sequences, grammars, languages: where biology, computer
science, linguistics and mathematics meet, Volume 1. Kluwer, Dordrecht,
2000, 13-23.

[4] Baldnescu, T. Generalized stream X machines with output delimited type.
Formal Aspects of Computing, 12, 2000, 473-484.

[5] Baldnescu, T., Gheorghe, M., Holcombe, M., Ipate, F. Testing collaborative
agents defined as stream X-machines. Advances in Artificial Life, Proceed-
ings of the 6th European Conference ECAL, Prague, Czech Republic, 10-14
September, Springer, Berlin, 2001, 296-305.

[6] Barnard, J., Whitworth, J., Woodward, M. Communicating X-machines.
Information and Software Technology, 38, 1996, 401-407.

[7] Cheng, K.-T. and Krishnakumar, A.S. Automatic Functional Test Gen-
eration Using the Extended Finite State Machine Model. Proceedings of
the 30th Design Automation Conference. Dallas, Texas, USA, June 14-18,
ACM Press, New Orleans, 1993,86-91.

[8] Cowling, A., Georgescu, H., Vertan, C. A structured way to Use Channels
for Communication in X-machine Systems. Formal Aspects of Computing,
12(6), 2000, 458-500.

[9] Eilenberg, S. Automata, languages and machines, Vol. A. Academic Press,
New York, 1994

[10] Fairtlough, M., Holcombe, M., Ipate, F., Jordan, C. Laycock, G. and Duan,
Z. Using an X-machine to Model a Video Cassette Recorder. Current issues
in electronic modeling, 3, 1995, 141-161.

18

[11] Georgescu, H., Vertan, C. A New Approach to Communicating X-machines.
Journal of Universal Computer Science, 6(5), 2000, 490-502.

[12] Gheorghe, M. Generalized Stream X-machines and Cooperating Dis-
tributed Grammar Systems. Formal Aspects of Computing, 12(6), 2001,
459-472.

[13] Heimdahl, M.P.E., Thompson, J.M., Czerny, B.J. Specification and analysis
of intercomponent communication, IEEE Computer, 31, 1998, 47-54.

[14] Hierons, R.M., Harman, M. Testing conformance to a quasi-non-
deterministic stream X-machine. Formal Aspects of Computing, 12(6),
2000, 423-442.

[15] Hierons, R.M. Checking States and Transitions of a set of Communicating
Finite State Machines, Microprocessors and Microsystems, Special Issue on
Testing and testing techniques for real-time embedded software systems,
24(9), 2001, 443-452.

[16] Holcombe, M. X-machines as a basis for dynamic system specification. Soft-
ware Engineering Journal, 3, 1988, 69-76.

[17] Holcombe, M., Ipate, F. and Grondoudis, A. Complete Functional Test-
ing of Safety-Critical Systems. Proceedinds of the 2nd IFAC Workshop on
Safety and Reliability in Emerging Control Technologies, Daytona Beach,
Florida, USA, 1-3 November, 199-204. Elsevier, Oxford, 1995.

[18] Holcombe, M. and Ipate, F. Correct Systems: Building a Business Process
Solution. Springer Verlag, Berlin, 1998

[19] Ipate, F. and Holcombe, M. Another look at computability. Informatica,
20, 1996, 359-372.

[20] Ipate, F. and Holcombe, M. An Integration Testing Method That is Proved
to Find all Faults. Intern. J. Computer Math., 63, 1997, 159-178.

[21] Ipate, F. and Holcombe, M. Specification and Testing using Generalized
Machines: a Presentation and a Case Study. Software Testing, Verification
and Reliability, 8, 1998, 61-81.

[22] Ipate, F. and Holcombe, M. A method for refining and testing generalized
machine specifications. Intern. J. of Computer Math., 68, 1998, 197-219.

[23] Ipate, F. and Holcombe, M. Generating Test Sequences from Non-
deterministic Generalized Stream X-machines. Formal Aspects of Comput-
ing, 12(6), 2000, 443-458.

[24] Ipate, F., Holcombe, M. Testing Conditions for Communicating Stream
X-machine Systems. Formal Aspects of Computing, 13(6), 2002, 431-446.

19

[25] Ipate, F. and Holcombe, M. An Integrated Refinement and Testing Method
for Stream X-Machines. Applicable Algebra in Engineering, Communica-
tion and Computing, 13(2), 2002, 67-91.

[26] Ipate, F. On the minimality of Stream X-machines, The Computer Journal,
2003 (to appear).

[27] Kefalas, P. Kapeti, E. A Design Language and Tool for X-machine Speci-
fication. Advances in Informatics. In Fotadis, D.I. and Nikolopoulos, S.D.
(eds). World Scientific, 2000, 134-145.

[28] Kefalas, P., Holcombe, M., Eleftherakis, G., Gheorghe, M. A formal method
for the development of agent-based systems. In: V.Plekhanova (Ed): Intel-
ligent Agent Software Engineering, Idea Group Publishing Hershey, 2003,
68-98.

[29] Kefalas, P., Eleftherakis, G., Kehris, E. Communicationg X-machines: from
theory to practice. In: Y.Manolopoulos, S.Evripidou, A.Kakas (Eds): Ad-
vances in Informatics, LNCS 2563, 2003.

[30] Kefalas, P., Eleftherakis, G., Kehris, E., Communicating X-Machines: A
Practical Approach for Modular Specification of Large Systems. Informa-
tion and Software Technology, 2003 (to appear).

[31] Kehris, E., Eleftherakis, G., Kefalas, P. Using X-machines to Model and
Test Discrete Event Simulation Programs. In Mastorakis, N. (ed), Systems
and Control: Theory and Applications. World Scientific and Engineering
Society Press, Athens, 2000, 163-171.

[32] Lee, D. and Yannakakis, M. Principles and Methods of Testing Finite State
Machines - A Survey. Proceedings of the IEEE, 84(8), 1996, 1090-1123.

[33] Luo, G., v. Bochmann, G., Petronko, A. Test Selection Based on Commu-
nicating Nondeterministic Finite State Machines Using a Generalized Wp-
Method, IEEE Transactions on Software Engineering, 30(2), 1994, 149-161.

[34] Luo, G., Das, A., von Bochmann, G. Generating tests for control portion
of SDL specifications, Protocol Test Systems vi, Elsevier, North-Holland,
1994, 51-66.

[35] Ostrand, T.J., Balcer, M. J. The Category-Partition Method for Specifying
and Generating Functional Tests. Communication of the ACM, 31(6), 1989,
667-686.

[36] Tanenbaum, A.S. Computer Networks, 3rd edition, Prentice Hall, 1996.

[37] Wang, C.-J., Liu, M.T. Generating test cases for EFSM with given fault
models. Proceedings of IEEE INFOCOM 93, Volume 2, 28 March - 1 April,
San Francisco, CA, USA, IEEE, San Francisco, 1993, 774-781.

20

